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ABSTRACT 
In this paper we detail two algorithms for detecting that a GSM 
mobile phone is moving (or stationary, since this is when the 
phone is simply not moving).  These algorithms, in early 
experiments, show excellent promise and require nothing from the 
mobile phone other than radio signals that the phone must have to 
perform its normal function.  We also discuss our approach to 
determine not only if a phone is mobile but also to differentiate 
motion based on walking from motion caused by traveling by car. 
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1. INTRODUCTION 
A number of authors have discussed the value of context in 
ubiquitous computing [1, 2] with location being a key component 
of context.  Of course, a user’s location is not fixed and rooted to 
one spot—they are mobile actors in their social milieu.  For many 
people, especially in the western world, a key element of their 
context and their “location” is their use of transportation.  The 
means of transportation can vary from the above-ground street 
trams of Zurich to the deeply buried central London Tube or from 
the blinding speed of 250kph on a German autobahn to a gentle 
3kph walk on Champs Elysées.  In any of these cases, the people 
engaged in this means of transport view this as key component of 
“what they are doing right now”, and their location context. 

When people are moving around in their world, they often use 
mobile phones both to coordinate their activities at the other end 
of the transportation and as a way to convert the otherwise 
“wasted” time in transit into useful work or social time.  Building 
on the work of the Place Lab project [3] we have been studying 
techniques that can be used to automatically detect when a mobile 
phone is moving, and when a phone is moving what means of 
transportation is being used.  We are not assuming the use of GPS 
on the mobile phone, both because this makes our results more 
widely applicable but also because many means of transportation 
do not allow a view of the sky to receive GPS signals (e.g. 
subways, in urban canyons). 

Clearly, our efforts to detect mobility need to be combined 
effectively with other location technologies that can detect places 

[4, 5], so that the user’s location can be detected at points in time 
when the user is not mobile.  In the interest of space, we do not 
detail our efforts to effectively recognize previously visited places 
[6].  

It is important to note that the work detailed in this paper does all 
of its computation on the mobile device itself and does not need to 
coordinate in any way with the network provider or the network 
infrastructure.  This has been a key assumption in all the Place 
Lab work [7], and it is preserved in this work in an effort to not 
compromise the end user’s privacy.  Any GSM mobile phone user 
can be tracked by their network provider, although the laws 
governing this tracking or the disclosure of obtained location 
information varies by locale.  We assume that the end-user is 
running applications that need to detect whether or not the user is 
in motion and will use the principles of informed consent [8]  

The key contributions of this work are: 

• Two practical algorithms for the detection of mobility 
using only the GSM radio present on any GSM mobile 
phone.  Naturally, these algorithms can also detect 
when a GSM mobile phone is stationary, since this 
simply the cases when the phone is not mobile. 

• An approach for detecting the mode of transportation 
employed, when the mobile phone is in motion, again 
using only the GSM radio signals available on any 
GSM mobile phone. 

2. Detecting Mobility 
With a GSM mobile phone, there are basically four properties of 
the cellular network that can be measured and that vary as the 
mobile phone moves through its radio environment. 

• Currently connected cell:  This is the identifier of the 
cell to which the mobile phone is currently “connected.”  
(Although this identifier represents a specific antenna 
on a specific, typically nearby, tower, we will not say 
antenna but “tower” as this is the common usage).  The 
connected cell is the one that the mobile phone 
communicates voice data to and from should a call be 
started, or be in progress.  Associated with the 
connected cell is a measurement of how strong the 
signal from that cell is being registered, according to the 
handset (signal strength). 

• Neighbor cells:  This is a list of identifiers that represent 
“nearby” cells within the cellular network of a given 
provider.  These are used to accomplish the “hand off” 
between cells as the phone moves through its 
environment.  Put another way, when the connected cell 
becomes faint one of the neighbor cells is chosen to 
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become the connected cell.  As with the currently 
connected cell, a signal strength value is measured by 
the handset for each neighboring cell. 

• Channel information:  A GSM mobile phone can see 
many “channels” in its environment, with each channel 
representing a particular cellular tower in the 
environment.  This data is very similar to neighbor cells 
with the exception that the mobile phone does not know 
the identity (or mobile carrier) of the cell towers listed 
in this set of channels.  For example, there may be 100 
active channels in the GSM environment and a 
particular handset on a particular network may know 
that it’s connected cell (id: 4223) is on channel 29 and 
the seven nearby neighbor cells are on channels 30-36, 
but it has no information about the other 92 channels in 
use by other users and networks.  Again, for each 
channel a signal strength value is calculated by the 
handset. 

• Timing advance:  For efficiency reasons, a GSM phone 
measures the amount of time it takes for its signal to 
reach the connected cell.  This data is used to coordinate 
between multiple, simultaneous users of the same cell 
tower.  Since the speed of radio transmissions is known, 
this timing information is effectively a distance 
measurement from the cell tower.  In practice this has a 
resolution of 550m.  Although this can be measured by 
the handset, the phones used in our experiments do not 
expose this information, so we do not use this data in 
our mobility calculations. 

The algorithms presented are derived from a very simple 
principle: when a phone is moving, discernable amounts of 
variation occur in the observed signal strengths as opposed to 
when the phone is stationary and the signal strengths are “stable.”  
Of course, in practice the radio environment is quite noisy and 
therein lies the challenge of distinguishing changes in the radio 
environment caused by the user’s motion from random, 
background noise. 

2.1 Detecting Motion 
In this section, we present two of our initial algorithms we have 
designed to distinguish between 2 motions states {MOBILE, 
STABLE}.    
The first algorithm is based on the RSSI (Receiving Signal 
Strength Indicator) “spread” of each GSM reading.  As indicated 
in the previous section, each cell tower has both a channel and a 
signal strength associated with it.  However, a GSM mobile phone 
does not typically have information about channels or towers of 
network providers not associated with the end-user’s monthly bill 
1.  
Our first algorithm tracks the difference between the maximal and 
the minimal signal strength values per channel observed in a 

                                                                 
1 This is the normal case.  When a user’s phone is “roaming” onto 

other networks, a mobile phone can see channel and signal 
information for other providers.  For simplicity, we have 
ignored this case in this document although the same class of 
techniques can be used in this case as well. 

given window of GSM readings. This metric gives a coarse 
estimation of the variation in the RSSI, the “spread,” over all 
channels. Intuitively, large variance is an indicative that the GSM 
mobile phone is seeing vastly different signal strength readings, 
and is therefore being mobile. While such differences may 
periodically occur while the phone is stationary, in most cases 
high variance is an indicative of mobility. 
Figure 1 presents the pseudo-code for the Spread Based Mobility 
Algorithm. The algorithm monitors the amount of RSSI spread 
within a sliding window of GSM readings.  When the average 
RSSI spread exceeds a certain upper threshold, the algorithm 
labels the phone as being {MOBILE}. Whenever the average 
RSSI spread falls below the threshold, the algorithm follows a 
stepwise gradual decay pattern until it falls below a minimum 
threshold, whereupon the algorithm transitions from {MOBLE} 

 {STATIONARY}. Currently, {STATIONARY}  
{MOBILE} transitions are done instantaneously: the instant the 
average signal strength difference exceeds the upper threshold, 
the {MOBILE} state is instantaneously fired.  
for (every GSM reading within the window) 

{ 

 Ignore signals which are “noise”; 

for (every sensed channel)  

 { 

  Sum RSSI spread; 

 } 

 Average RSSI spread; 

 If (RSSI spread > UpperThreshold)  

  Return “MOBILE”; 

 Else  

  Begin stepwise decay counter 

 If (counter < MinimumThreshold) 

  Return “STATIONARY”;  

} 

Figure 1. Spread Based Mobility Algorithm 
The second algorithm tracks the difference in Euclidean distance 
between every consecutive pair of GSM readings within a given 
window.  Conceptually, Euclidean distance correlates to how 
similar these consecutive GSM readings are to each other.  The 
smaller the Euclidean distance between the two readings the more 
similar these readings are.  
Figure 2 presents the pseudo-code for Window Based Mobility 
Algorithm. Whenever the Euclidean distance between two 
consecutive readings is larger than a DistanceThreshold, the 
algorithm treats the pair as “bad” and increments a counter. A 
large number of “bad” readings is an indicative of instability in 
signal strength, which is assumed to be caused by mobility. Once 
the count of bad readings exceeds BadReadingsThreshold, the 
phone is labeled as being {MOBILE}. To avoid a succession of 
transitions between {MOBILE} and {STATIONARY} states, the 
algorithm requires the number of “bad” readings to be either 
beyond or above the BadReadingsThreshold for a certain period 
of time (this is not reflected in the pseudo-code). 
numOfBadReadings = 0; 



for (every consecutive pair of GSM readings 
within the window) 

{ 

 Calculate Euclidean distance 

 if (Euclidean distance > DistanceThreshold) 

 numOfBadReadings++; 

} 

 

if (numOfBadReadings > BadReadingsThreshold) 

 return “Mobile”; 

else 

 return “Stationary”; 

Figure 2. Window Based Mobility Algorithm 

2.2 Differentiating Driving vs. Walking 
The same methods described for detecting motion can be adapted 
to differentiate types of movement such as between driving and 
walking, two key means of transport for many in the urban, 
western world. As one would expect, the rate of change in GSM 
signals is significantly greater when driving as opposed to 
walking. However, there are many times when the activity of 
driving can look very similar to walking. While walking, 
buildings, buses passing by, or other obstructions can cause 
drastic changes in signal strengths, which may may look similar 
to driving. In addition, city driving is typically stop-and-go traffic 
which can cause signals to seem similar to those seen in a walking 
activity. We use a two-level approach for detecting these types of 
movements to account for these types of anomalies. 
The first level uses the RSSI spread and Euclidean distance 
techniques to determine if the rate of change in signal strengths is 
{STILL, SLOW, FAST}. As described before, we use a separate 
algorithm to determine if the device is stationary or mobile. The 
device being stationary is equivalent to the STILL value. If the 
device is considered to be mobile, we then apply a second 
algorithm. Instead of calculating the average spread across the 
various channels in the RSSI case, we look at the minimum and 
maximum of the averages in each channels’ signal strength. This 
allows us to see the actual change in each channel, important 
feature that can sometimes be masked out when averaging the 
values together. Using these calculated differences, if the value is 
above a threshold we consider movement to be FAST. Otherwise, 
movement is considered to be SLOW. Similarly, in the Euclidean 
distance approach, we look for several values above a threshold 
within a window of measurements. If we see the amount of 
measurements, we declare FAST movement. Otherwise, if our 
stationary algorithms determined we were mobile, the algorithm 
will output SLOW movement.  
Second, we use the three different outputs from the basic 
movements in the first step to determine a final activity estimate. 
This second level is a state machine with three different states: 
STATIONARY, WALKING, and DRIVING. This state machine 
is designed to address the problem or different rates of movement 
in walking and driving activities (e.g. stop-and-go). The initial 
state is stationary. A slow movement will cause the state to 
transition to walking. Any slow or still movement input will keep 
the state in walking, unless movement is still for longer than a 
certain amount of minutes, we use 3 minutes for our threshold.  A 

fast movement input from any state will always cause a transition 
to the driving state. Any still, slow, or additional fast movements 
will keep the activity as driving, unless movement is still for 
longer than our described threshold. Initial results of this 
approach are promising in capturing the human perceived 
activities of driving and walking. 
 

3. Results 
To test the accuracy of our mobility detection algorithms, we 
developed a set of tools running on a commodity mobile phone 
(Audiovox SMT 5600). The tools allow capturing series of 
labeled GSM measurements, or in other words, snapshots of 
visible GSM towers along with their respective signal strength 
values, as reported by the mobile phone.  
Using our system, we recorded labeled traces of GSM 
measurements, consisting of periods of about 10 minutes of 
stillness followed by about 2-5 minutes of movement between 
places. The places in the trace include two places in our 
laboratory, three nearby coffee shops, a restaurant and a 
bookstore. 
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Figure 3. Results for Window Based Mobility Algorithm 
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Figure 4. Results for Spread Based Mobility Algorithm 
The accuracy of Window Based and Spread Based algorithms 
applied on one of the traces we collected is depicted on Figure 3 
and Figure 4, respectively. The solid lines represent the ground 



truth and the dashed lines represent the output of our mobility 
detection algorithms. Both algorithms perform well, recognizing 
most of the periods of stillness and mobility correctly. Window 
Based algorithm successfully differentiates between all periods of 
stillness and movement, but has a slight lag in making the 
decision. The lag is the consequence of a larger window size, 
necessary for accumulating enough measurements to make the 
correct decision. Spread Based algorithm, on the other hand, does 
not suffer from the lag, having much smaller window size. 
However, it is more jumpy in the presence of non-perfectly stable 
signals and sometimes misses short periods of mobility. The 
results of applying the algorithms on additional data traces we 
collected looks similar and are therefore not included in the paper.  
Although our algorithms performed well on our perfectly crafted 
data traces, it is still to be discovered whether they to perform as 
well in the real world. We are in the process of deploying the 
algorithms to be used by several location-aware applications 
currently developed in our lab.  
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Figure 5. Effect of GPRS on Signal Strength 

3.1 Effects of Using GPRS on Mobility 
Detection Algorithms 
Applications running on a mobile phone may periodically use 
GPRS (General Packet Radio Service, a data service that runs in 
conjunction with GSM mobile phone networks) for data 
communication. For example, location-aware application may 
send a message from one user to another, download a web page, 
or send aggregate statistics back “to the web” for later browsing. 
Since accuracy of our mobility detection algorithms depends on 
stability (or predictability) of signal strength values, we tested the 
effects of downloading and uploading GPRS data on signal 
strength as measured by the mobile phone. Figure 5 depicts the 
measured signal strength values of the 3 strongest cells while not 
using GPRS, uploading data and downloading data. The phone 
was lying still on the table during the testing period. The thick 
solid line differentiates between the different states and the thick 
dashed line represents the output of the Window Based mobility 
algorithm.  
The results show that there is a small local instability of signal 
strength when an upload or a download processes starts running, 
but the signal strength values stabilize shortly thereafter. There 
also appears to be no difference in reported signal strength values 
between the period when the GPRS connection was open and 
closed.  The Window Based algorithm performed perfectly on this 

data set, reporting that the phone is stationary. In the future, we 
plan to investigate effects of GPRS on signal strength values in 
mobile environments, again using applications that we are 
developing in house. 

4. Conclusions and future work 
In this paper, we presented two mobility detection algorithms. 
Both work reasonably well in the environment that they have 
been designed for—urban areas with many cellular towers. In 
addition, both seem to suffer little in the face of GPRS usage by 
the user.  In the future, we plan to continue working to evaluate 
our algorithms in different, real-world settings. 
We also plan to derive a scheme for automatic place naming such 
that when the phone is stationary, we can attempt to automatically 
generate a sensible “name” of the place for the user. This may be 
accomplished in a variety of ways. First, we may use simple rule-
based naming. For example, at 1:00am you are most likely at 
home, and at 11:00am on the weekday you are most likely at 
work. Some history information about the human carrying the 
phone may help in this approach as well. Second, we may utilize 
MapPoint like web-services for translating latitude/longitude 
coordinates into meaningful names. Of course, for this approach 
to work, the phone has to somehow obtain its latitude/longitude 
coordinates, although the techniques for this type of wide area 
localization have been explored [3]. We hope in the future to be 
able to combine motion detection of a mobile phone, automatic 
place naming and wide area localization services. 
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